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ABSTRACT
Machine learning (ML) is becoming a critical tool for interrogation of large complex data. Labeling,
defined as the process of adding meaningful annotations, is a crucial step of supervised ML. However,
labeling datasets is time consuming. Here we show that convolutional neural networks (CNNs), trained
on crudely labeled astronomical videos, can be leveraged to improve the quality of data labeling and
reduce the need for human intervention. We use videos of the solar magnetic field, crudely labeled into
two classes: emergence or non-emergence of bipolar magnetic regions (BMRs), based on their first
detection on the solar disk. We train CNNs using crude labels, manually verify, correct labeling vs.
CNN disagreements, and repeat this process until convergence. Traditionally, flux emergence labelling
is done  manually. We find that a high-quality labeled dataset, derived through this iterative process,
reduces the necessary manual verification by 50%.  Furthermore, by gradually masking the videos and
looking for maximum change in CNN inference, we locate BMR emergence time without retraining the
CNN.  This  demonstrates  the  versatility  of  CNNs for  simplifying  the  challenging  task  of  labeling
complex dynamic events.

Introduction
Big-data problems have become increasingly common in astronomy 1 . Large datasets present complex
challenges  that  cannot  be  tackled  with  traditional  computational  techniques.  Supervised  machine
learning (ML),  e.g.  deep learning,  is  a  promising  and effective  technique  for  the  classification  of
complex data such as images and videos 2 . However, manually labelling large databases is a laborious
process that requires time and consistency. Iterative labelling approaches, such as ‘active learning’ 3 can
significantly save time, reducing the cost of making big-data ML ready. 

‘Bipolar flux emergence’, which involves the appearance of bipolar/complex magnetic regions
(BMRs) on the solar surface, is an example of complex dynamical events that are difficult to label.
These  regions  have  the  potential  to  drive  space  weather  events  such  as  flares  and  coronal  mass
ejections that can negatively affect satellite networks and long-distance communication 4–6 . Techniques
for detecting flux emergence and interactions typically rely on image-by-image processing to perform
segmentation and tracking of magnetic elements for detecting dynamic phenomena such as appearance,
disappearance, splitting and merging 7–11 . Recently, the single-image segmentation component of this
process has been performed using CNNs 12  . However, the complex interaction of magnetic elements
demands increasingly complex tracking codes and limits the possibility of real-time detection. For this
reason, we have created an end-to-end deep-learning approach for classifying videos of magnetic patch
evolution without explicitly supplying segmented images, tracking algorithms or other hand-crafted
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features. The idea is to allow relevant information abstraction to autonomously take place deeper in the
CNN layers to detect flux elements and describe their interaction towards appropriate classification. We
start  with a  crudely labelled  solar  flux emergence dataset,  train a  deep learning model,  refine the
labelling using the trained model and, finally, show how a simple change in data input allows us to
detect the time of emergence.

Results
We use 96-minute cadence videos of SoHO/MDI 13 Line-of-Sight (LoS) magnetic patches (15◦ × 15◦ in
Carrington grid) (Figure 1) labelled for BMR ‘emergence’ (i.e. BMRs that clearly emerge within the
visible solar disk) or BMR ‘non-emergence’ (i.e. BMRs that rotate into view). We selected this patch

extent as we wanted an integer number of non-overlapping boxes per 360◦ longitude and 180◦ latitude.

Also, the extent of 15◦ was large enough to encompass all but the largest few BMRs from the BARD
catalog. Again, since we are interested in the emergence process, the final size of the BMR need not set
an upper limit on the size of our box, as long as the box size is sufficient to capture the emergence. We
use BMRs from the Bi-polar Active Region Detection (BARD) code 14 to produce the initial labels. Our
initial emergence vs. non-emergence labels are crude in nature, based simply on the first observation of
each BMR in the catalog. Any BMR whose first observation occurs to the west of -60 ◦ heliographic
longitude, with respect to the solar central meridian, is labeled as an emergence and the rest of as non-
emergence. We use the following steps to bring uniformity in the videos as input to a classification
model:

1. Consecutive frames in the videos are separated in time by 96 minutes, i.e. the cadence of MDI
full-disc magnetograms. However, data-gaps of MDI cause frame gaps in our videos. Based on
the difference in time-stamps of the consecutive video frames we identify missing frames. As
CNN is blind to the timestamps of individual frames, we need to make sure that every two
consecutive frames have a constant time difference i.e. 96 minutes. For this purpose we perform
interpolation. As the frames are projected to the Carrington grid, we linearly interpolate missing
frame pixels using available frame pixels over the time axis for all the locations across the
frames.

2. Regions outside the solar limb are replaced with a background field of 0 Gauss
3. Videos are padded with 0 Gauss frames towards the end to make all videos have a standard

duration of 225 frames.
This translates to  a video classification problem with inputs of size 90×90 pixels (in a Carrington
longitude-latitude grid), 225 time frames (  1/2 solar rotation), and output either 1 (emergence) or 0≳
(non-emergence).  This  is  to  be  noted,  that  MDI  pixels  subtend  2”,  and  this  corresponds  to
approximately  1450 km on the  solar  surface,  at  the  disk center.  From the  opposite  perspective,  1
heliocentric  degree  subtends approximately  12130 km on the  solar  surface.  The ratio  of  these i.e.
(12130 km/heliocentric degree) / (1450 km at disc center / MDI pixel) = 8.36 MDI pixels / heliocentric
degree at disk center, gives the Carrington plate scale that would preserve the MDI resolution at the
disk center. Since 1) most BMRs will not appear at disk center and 2) we are not interested in the
smallest resolvable regions anyway, we chose a slightly courser sampling of 6 pixels per heliocentric

degree (i.e. 90 pixels/15◦ ) for the Carrington maps. 
To help the CNN with the training process we normalize the input video frames (im) first by

clipping the fields within [-1000 Gauss, 1000 Gauss] and then applying the transformation 
1
2

(1 + 
im

1000
). Thus 0, 0.5 and 1 in the normalised frames  represent -1000 Gauss, 0 Gauss and 1000 Gauss fields
respectively.



We divide our data into a training+validation set (BMR observations within the first 10 months
of every year between 1996 and 2011; Figure 2) and a test set (BMR observations on the last two
months of every year between 1996 and 2011; Figure 2). We exclusively use the training+validation set
to train the CNN weights and optimize CNN hyper-parameters, and set aside the test set to evaluate the
performance of our algorithm under pseudo-operational conditions (i.e. with data that the CNN has
never seen). We make all our design decisions based on the training+validation set. The test set is only
used to assess the final performance shown this article.

For every model we augment each video with vertical and polarity flips resulting in an increase
of the number of our training and validation samples by a factor of 4. This is justified because the
characteristics of magnetic flux emergence are not expected to be different based on whether they occur
in the northern or southern hemisphere of the Sun. Similarly, hemispheric polarity orientation changes
sign with every new solar cycle without this having any measurable impact on the properties of BMRs.

We use a CNN 15 based on the Visual Geometry Group (VGG) architecture 16 . This architecture
performs information abstraction with repeated convolution layers followed by a non-linear activation

called ‘swish’ activation [swish(x) =
x

1+e− x ]17 . After each convolutional layer we perform max-pooling,

gradually reducing the patch size and increasing the number of channels ending up in 1D vectors
(Figure 1). Subsequently, the fully-connected layers at the end (Figure 1) generate the classification
outcome with a sigmoid activation 18 . To regularize the model we add drop-outs 19 with a rate of 0.5 in
the last two fully connected layers before the output layer. To optimize the network parameters during
training we use a ‘stochastic gradient descent’ 20 optimizer with a learning rate of 
10−4 , momentum of 0.9 and a batch size of 10.

Iterative Relabelling: Reducing Manual Intervention
For efficiently relabeling the data, we split the training+validation set (a total of 2032 videos)

into 5 blocks of two months each and use the blocks to assemble five training+validation permutations
to train 5 different models (models 1-5; Figure 2). This way, each one of these two-month blocks has an
associated  model  where  this  block  is  not  used  to  train  CNN weights.  This  enables  the  unbiased
evaluation  of  the  classification  of  all  videos  and an assessment  of  the  quality  of  the  crude  initial
labeling.

We train 5 models and evaluate them on their respective 5 non-overlapping validation blocks
(Figure  2).  Subsequently,  we  manually  check  and  relabel  (if  necessary)  the  videos  where  CNN
disagrees with the crude labeling (both false positives and false negatives). During each pass, we re-
train  all  models  with  the  verified  data  and  repeat  this  verification  and  relabeling  process  until
convergence (see detailed algorithm in ‘Methods’ section).

Figure 3 shows the relabelling process through a bar chart. We find that for higher passes an
increasing fraction of the CNN labeling “mistakes” (false positives and negatives) are actually mistakes
in the initial  crude BARD labeling.  After  convergence,  we manually check all  the videos  that  the
models classified successfully and find that 90% of them had been correctly labelled through this∼
process, even though we had only manually verified 50% of them. This translates into a significant∼
reduction of human effort when working with larger datasets.

Model-ensemble Training and Performance Evaluation
We  quantify  the  uncertainty  in  emergence/non-emergence  classification  using  a  different

ensemble of the trained models (models 6-9; Figure 2). In this case we set aside months 9 and 10 as a
common benchmark (‘benchmarking set’; Figure 2) and use the remaining four blocks to train and
validate four permutation models like those described in the previous section. Additionally, we create
two random realization per model by changing the random seed that determines the order in which the



neural network sees the videos and the drop-out (random removal) of neuron connections.
We use the median of the final sigmoid activation output of these 8 models (model 6-9 × 2

random realizations) as the metric to classify each video. We find that an optimal threshold of 0.6
applied to the median of sigmoid model output yields the True Positive (TP) maximum accuracy. We

derive this threshold from the intersection point of precision (
True Positive (TP )

True Positive (TP )+False Positive ( FP )
)

and recall (
True Positive (TP )

True Positive (TP )+False Negative ( FN )
) curves (Figure 4).

Finally, we add one more random realization for each of models 1-5 and use the tuned 0.6 probability
threshold (derived from models 6-9) to classify the ‘test set’ and assess performance under pseudo-
operational conditions. Using model ensemble median as the classification metric, we achieve 83%
classification accuracy. We also evaluate other binary classification performance metrics such as True
Skill  Statistic  (TSS)  and  Matthews  Correlation  Coefficient  (MCC)  defined  by:

TSS=
TP

TP+FN
+

TN
TN +FP

− 1and  MCC=
TP Χ TN − FP Χ FN

√(TP+FP ) (TP+ FN ) (TN +FP ) (TN+FN )
.  We  find  both  TSS

and MCC to be 0.65. Figure 4 shows model inferences on the ‘test set’ as 2D histograms over videos
and emergence probability, with the histogram frequency being the number of models that output a
certain probability value from sigmoid activation. We divide the 2D histograms into two regions, which
we name unstable  and stable  inferences  for  the  purpose of  uncertainty  estimation in  classification
accuracy. Stable (unstable) inferences encompass the videos for which the probability threshold of 0.6
lies  outside  (inside)  the  model-ensemble’s  25  th -75  th percentile  range.  We  define  unstable
classifications as those that will change if another percentile is used as reference. As observed in Figure
4, the ensemble of CNNs is more confident in the classification of emergence than of non-emergence,
i.e. there is a larger (smaller) proportion of unstable true negatives (true positives). Because
of  this,  performance is  more  sensitive  to  changes  in  the  classification  of  non-emergences  than  of
emergences. We find that accuracy falls to 79% (71%) when the ensemble’s 25 th  (75 th  ) percentile is
used as the classification metric instead of the ensemble median. False positives and negatives have
similar ratios of stable vs. unstable videos. Thus, they do not seem to drive performance changes as
much. To examine the model performance at different phases of solar cycle, we break the test into
blocks of 4 months (every 2 years) and evaluate the classification accuracy on each of those blocks. As
shown in bottom-panel of Figure 4, we don’t find any systematic effect introduced by the solar cycle
phase on accuracy.

Model Repurposing: Automatic Detection of Emergence Time
As a sanity check, we test the ability of the network to autonomously determine the time of each

BMR emergence. For this, we use all videos that the model ensemble classifies correctly. The idea is to
identify what are the relevant frames that lead the ensemble of models to classify a video as a BMR
emergence. We mask-out portions of each video, after an arbitrary number of frames, by repeating said
frame until the end of the video. This is done iteratively for each video starting with the last frame, then
with the last two frames, then with the last three frames, then with the last n frames, and so on, until the
entire video has been masked out. We find there is a period in time where the majority of the models
transition from classifying the video as an emergence into a non-emergence.  The frame when that
happens coincides well with the moment where the BMR emerges on the solar disk.

We quantify this by taking the time derivative of the sigmoid probability for each model in the
ensemble and finding the frame with maximum gradient.  The median of the frame number for all
models in the ensemble is what we determine to be the frame of emergence. This process is shown in
the upper (a-d) and lower panels (e-h) of Figure 5.  Figure 5a and 5e depict the model-ensemble curves
for one of the videos (frames shown in Figure 1). The ground-truth frame and predicted frame locations



are shown with vertical dashed line and red star respectively. We also show other sample curves for
false  positives  and true  and false  negatives.  We note  that  the  ensemble  median  at  the  end of  the
probability  curve  (i.e.  no  masked  frames)  is  what  actually  determines  the  classification
(emergence/non-emergence), depending on whether the ensemble median is greater or less than 0.6
(red dashed line in Figure 5). Figure 6 shows the time labeling of the BMR emergence, where frame
color indicates the number of models classifying the video as an emergence given that all subsequent
frames have been masked-out. 

Figure 7 shows the accuracy of our emergence frame detection.
Upper part of Figure 7 shows a scatterplot between the  real emergence time and identified time of
emrgence through model-ensemble. Lower part of Figure 7 shows a 2D histogram with the difference
between the estimated and real  time of  emergence for all  test  set  videos  that  the model-ensemble
correctly classifies as BMR emergence. The median of all model ensembles is +0.4 days. This means
that using the median of the location of maximum probability gradient tends to result in an estimation
that is slightly behind the observed emergence frame. The 5th percentile is -2.1 days, the 25th percentile
+0.1 days, the 75th  percentile +1.1 days, and the 95th  percentile +2.7 days. This means that 50% (90%)
of  emergence  detections  are  within  [0.1,1.1]  ([-2.1,  2.7])  days  of  the  observed  emergence.  For

reference, a 15◦ × 15◦ patch is visible on disk for 14 days.∼
We note that we have not fine-tuned or optimized in any way what are the optimal detection

thresholds that would to maximize accuracy of frame detection. This is beyond the scope of this paper
and needs to be done carefully on the training+validation set before in can be tested on a pseudo-
operational setting with the test set. Instead, our goal is to showcase the versatility and potential of
CNNs. We want to highlight how training them for something as simple as a ‘yes/no’ question can be
easily re-purposed for a much more sophisticated question like a ‘yes/no and, if yes, when?’.

Discussion
We show that a deep learning model can be harnessed to refine the initially crude labelling of the
dataset used for training the model. We achieve this by partitioning the training dataset into blocks and
training several models with complementary validation sets. We find that, as we progress through this
iterative process, any false positive and false negatives reported by the CNN are increasingly likely to
be mislabels. This iterative process lessens the manual effort needed for painstakingly labeling data by
50%,  which  is  one  of  the  main  obstacles  of  deep  learning  applications  to  classification  on  large
astronomical databases.We factored in the associate uncertainty of using a relatively small dataset by
training  an  ensemble  of  models  and  calculating  the  median  and  range  of  possible  classification
outcomes.  Using  the  ensemble  median  yields  a  classification  accuracy  of  83%  of  BMR  flux
emergences vs. non-emergences. Choosing the 25th (75th  ) percentile, instead of the median, translates
into a performance reduction to 79% (71%). This asymmetry is a consequence of the CNN ensemble
being more confident about classifying emergences vs. non-emergences. 

Even though our model was solely trained as an emergence classifier, we show that it can be re-
purposed  to  also  detect  the  time  of  emergence  by  progressively  freezing  video  frames  until  the
emergence event is masked. We see this as evidence that our model is being able to learn, abstract, and
generalize the characteristics that make a BMR flux emergence. This has interesting implications for
the labeling, and classification of dynamical astrophysical events in which the exact time of the event is
unknown. This implies that it may be possible to use the deep learning model for the prediction of
emergence by only looking at the early evolution prior to flux emergence. Early detection of magnetic
flux emergence, if possible before there are signatures visible to a human observer, is a holy grail in
space weather  forecasting.  Coupled with a  early-warning observatory placed at  the L1 Lagrangian
point, it would significantly increase our readiness and ability to mitigate its impact.



Methods
BARD. The Bipolar Active Region Detection (BARD) catalog14 uses a semi-automatic segmentation
algorithm, coupled with human supervision to detect and track BMRs as they emerge and/or rotate in
and out of view at a cadence of one observation per day.

VGG. This is a CNN architecture available in two varieties- VGG16 and VGG19 named after the depth
of layers 16 . The convolutional layers uses 3×3 kernels. The volume is controlled by maxpooling as
the depth increases. The network ends with two fully-connected layers. It is widely used for natural
image  classification.  Our  CNN architecture  is  based  on  VGG with  input  being  videos  instead  of
images.

Sigmoid Activation. The sigmoid function18 (sigmoid ( x )=
1

1+e− x ) outputs a number within 0-1 and is

typically used to represent classification probability. We use sigmoid activation at the end to evaluate
the probability of a video to be an ‘emergence’.

Swish Activation. Swish17 a smooth activation function developed by Google to replace the widely
used activation function ReLU (max(0, x)). Swish activation is represented as swish(x) = x.sigmoid(x)
We use ‘swish’ activation as the non-linearity
after every convolution layer.

Relabelling Algorithm. The detailed steps of our iterative relabelling algorithm are shown below-
1. Divide crudely labelled data into 5 train-validation combination where Monthsval = {2m − 1,

2m} and Monthstrain = {1, 2, .., 10}\Monthsval  m  {1, 2, 3, 4, 5}∀ ∈
2. Train the model (CNN) for each combination until validation accuracy reaches maximum.
3. Using the trained model inference identify false-postives (fp) and false-negatives (fn).
4. Look at each fp, fn and identify model mistakes (E) where crude labels are found to be correct
5. Calculate the mistakes of crude label |fp| + |fn| − |E| and change those labels

6. Calculate the ratio R=
|E|

|fp|+|fn|−|E|
7. n = 1
8. DataPass[n] = relabelled data
9. While R>0.5 do

a) Divide DataPass[n]  into 5 train-validation combination where  Monthsval = {2m − 1, 2m} and
Monthstrain = {1, 2, .., 10}\Monthsval  m  {1, 2, 3, 4, 5}∀ ∈

b) Train the model for each combination until validation accuracy reaches maximum.
c) Using the trained model inference identify new (not seen in prior passes) false-postives (fp)

and false-negatives (fn).
d) Look at each  fp, fn and identify model mistakes (E) where crude labels are found to be

correct
e) Calculate the mistakes of crude label |fp| + |fn| − |E| and change those labels

f) Calculate the ratio R=
|E|

|fp|+|fn|−|E|
g) n = n + 1



h) DataPass[n] = relabelled data
10. return DataPass[n] , model

Data availability
The SoHO/MDI magnetograms, used to create the flux emergence videos for this study, are available
from the Joint Science Operations Center (http://jsoc.stanford.edu). All the flux evolution videos with
their  ‘emergence’,  ‘non-emergence’  labels  can  be  accessed  through  Harvard  Dataverse
(https://doi.org/10.7910/DVN/6F25MG)..

Code availability
The iterative relabelling algorithm has been explicitly depicted in the ‘Methods’ section. The code for
data preparation and training the CNN can be accessed in the form of a python notebook through
https://github.com/subhamoysgit/flux_emergence/.
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Figures

Figure  1. Dataset  and model  architecture.  Upper  part  of  the  figure  shows every  5th  frame of  an
emergence video starting on November 29, 1998 17:36 hours (UT).  Lower part of the figure shows
adapted deep learning model for classifying videos into ‘emergence’ or ‘non-emergence’ classes. We
use repeated convolution, max-pooling and fully connected layers. The operations (convolution and
max-pooling with n × n kernels) are placed between the boxes (width×height×n_channels), signifying
boxes as the outcomes of those operations.



Figure  2. Data  management  used  to  build,  train,  validate  and  test  different  models  for  iterative
relabelling, detection threshold estimation and performance evaluation. We split the data according to
the months of the year to minimize the impact of the large temporal coherence present in solar data.
The randomly-sampled splits typically used in other ML applications tend to overestimate performance
in the solar case due to the fact that data close to each other in time can be generated by virtually the
same structures.

Months
Iterative Data Relabelling Uncertainty Estimation
Performance Evaluation Detection Threshold Definition

model1 model2 model3 model4 model5 model6 model7 model8 model9
Jan

Training Set

Validation
Training Set

Validation
Feb
Mar

Validation Validation
Apr
May

Validation

Training Set

Validation
 Training Set

Jun
Jul

Validation Validation
Aug
Sep

Validation Benchmarking Set
Oct
Nov

Test Set
Dec



Figure 3. Sequence of iterative relabelling and convergence of performance. Top panel shows how the
relabelling progresses through a total of 2032 videos (height of the bars) from Pass I to Pass IV. The
videos are divided to 5 non-overlapping validation blocks (numbered circles in bottom panels) and are
manually checked in a particular  pass  if  the model  (CNN) inference differs from the initial  crude
labelling and was not checked in prior passes. The red bars show the proportion of disagreements that
have been manually verified in previous passes. The dashed black line shows the total proportion of
videos that have been manually checked. The yellow (real mislabels) and blue (CNN mistakes) bars
show newly discovered disagreements. The number of total disagreements reduces with each pass. The
proportion of newly discovered disagreements that lead to a relabel increases with each pass. These
trends result from labelled data makes more sense, allowing the CNN to better generalize. We quantify

these trends as fractions 
B

B+C+D
,

B
B+C

, and plot them against CNN accuracy for different validation

blocks in the bottom panels. Bottom left panel captures the trend in the bar chart and shows that the
need of relabeling goes down from Pass I to Pass IV, because each pass is progressively downward in
the plot. Bottom right panel shows that the models tend to capture the problems in the crude labeling
better as we go higher in the passes because each pass is progressively upward in the plot. Both label
change requirement and correctness of the CNN in disagreement become linearly independent of CNN
accuracy for higher passes, as shown by the correlation coefficients.



Figure 4. Model ensemble used to estimate the classification accuracy on test set. Model inferences are
depicted as 2D histograms in the panels a-d. The x-axis indicates video number and the y-axis shows
sigmoid output of the CNN-ensemble.  The gray scale  depicts  the number of CNNs with a certain
sigmoid probability output for a particular video. The median of model-ensemble outputs for a given
video is marked with orange dots and the videos are arranged in ascending order of medians. Videos
are  classified  as  ‘emergence  (positive)’ or  ‘non-emergence  (negative)’ depending  on  whether  the
median probability exceeds a threshold of 0.6 (dashed line) that is found as the intersection point of the
precision and recall curves as shown by the black curves on the right. The shaded regions enclose the
25th and 75th percentiles of the distribution of model outputs for each video. To estimate the uncertainty
in classification accuracy, the ensemble inferences are divided into stable, unstable ones as shown in all
the panels separated by a vertical dashed line. For stable (unstable) inferences, the probability threshold
of 0.6 lies outside (inside) the ensemble 25th  -75th percentile range.  Panel e shows the classification
accuracy, marked by heights of orange bars, evaluated on the test set as a function of solar cycle phase.
The dashed horizontal line marks a classification accuracy of 80% as reference. The  monthly mean
total sunspot number from SILSO (publicly available at https://wwwbis.sidc.be/silso/) is depicted with
the solid black curve to show solar cycle phase.



Figure  5. Identifying  emergence  epoch  by  frame  stacking.  Panels  a-d show  how  the  emergence
probability changes for a video when frame truncation is gradually reduced to cover all the original
frames and subsequently videos are classified as positive or negative with a threshold of 0.6 depicted
by the red horizontal dashed line. Panels e-h show the identification of emergence epoch (depicted by a
red star) locating the frame of maximum emergence probability gradient. Top left panel depicts the
same event as shown in Figure 1. The ground truth frames are marked by the vertical dashed lines. To
show the central tendency of probability and probability gradient the region values for each frame
number are sorted and regions between equidistant points from extrema are shaded.



Figure 6. Emergence epoch identification using an ensemble of models.  The panels correspond to
every 5th frame of the ‘bipolar emergence’ video also shown in Figure 1. Each frame is color-coded
according to the number of models that classify the video as ‘emergence’ until that frame. 



Figure 7. Accuracy of emergence epoch identification. Top panel shows predicted time of emergence
vs ground-truth time for each ensemble member. The size of the symbols are scaled according to their

distance (D) from ensemble-mean (symbol size = 10 e
−( D

σ )
2

; σ is the ensemble-standard deviation) for

each video on the test set. Bottom panel shows a 2D histogram representing the joint distribution of the
‘bipolar emergence’ videos and predicted emergence time w.r.t. ground truth using model ensemble.
The gray level represents the number of models predicting within a time bin (1 day) for a particular
video. The green arrow points to the location of thevideo in top panel in the 2D histogram. Median time
for over the models for each video is depicted by orange dot. The ground truth reference is depicted by
the black dashed horizontal line. The histograms on the right show occurrence of prediction over all
models (black) and model ensemble medians per video (orange). The median of the orange histogram
is depicted by the dashed orange horizontal line. It clearly shows that the models have a tendency to
detect the emergence little later (≈0.4 day) than the actual initiation (also seen in Figure 5). The purple
and  light  blue  shaded  region  show  the  time  range  within  which  25th  -75th percentile  and  5th-95th

percentile of predictions lie respectively.
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